Supplementary Online Material Organic carbon dynamics after additions of pyrogenic organic matter and crop residues over seven years R. Saman Dharmakeerthi^{1,2}, Kelly Hanley², Thea Whitman², Dominic Woolf², Johannes Lehmann^{2,3}* ¹Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka; ²Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853, USA; ³Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY 14853, USA *corresponding author; email: CL273@cornell.edu 1 ## **Supplementary Online Table S1.** Pool sizes and their mineralization rate constants estimated after each sugarcane addition and/or disturbance during the incubation period (n=3). After the first disturbance, the shape of the cumulative CO₂ release curves without sugarcane additions did not follow an exponential trend (Supplementary Online Fig. S1). As a result, RMSE of the double-exponential regression models were very high and parameters were not estimated for those two treatments. The number of data points collected during the fourth sugarcane addition and/or disturbance was insufficient to fit a two-compartment model. | Constant | SC | Duration | | Easily mineralizable pool‡ | | | Persistent pool‡ | | | | |-----------------------|----------|----------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | | addition | (days) | | | | | | | | | | | | | PyOM† | PyOM+SC | SC | NON | РуОМ | PyOM+SC | SC | NON | | Size (X) | 1 | 920 | 0.33 _B ^c | 3.96 _B ^b | 4.76 _A ^a | 0.40 _B ^c | 1.49 _A c | 4.78 _A ^a | 4.01 _B ^b | 0.84 _A ^d | | (mg g ⁻¹) | 2 | 602 | ne | 4.89 _A ^a | 2.97 _B ^b | ne | ne | 5.29 _A ^a | 6.01 _A ^a | ne | | | 3 | 487 | ne | 3.05 _A ^a | 3.63 _A ^a | ne | ne | 4.31_A^a | 2.95 _A ^a | ne | | | 5 | 340 | ne | 2.63 _A ^a | 2.58 _A ^a | ne | ne | 3.87 _A ^a | 3.08 _A ^a | ne | | | | | | | | | | | | | | Rate (k) | 1 | 920 | 55.6 _A ^a | 18.6 _A b | 12.1 _A ^c | 44.2 _A ^a | 0.94 _B ^a | $1.30_{\text{B}}^{\text{a}}$ | 0.92_{B}^{a} | 1.24 _B ^a | | (year ⁻¹) | 2 | 602 | ne | 13.6 _A ^b | 34.5 _A ^a | ne | ne | 2.12_B^{a} | 2.62 _B ^a | ne | | | 3 | 487 | ne | 73.0 _A ^a | 35.2 _A ^a | ne | ne | 2.94 _B ^a | $1.96_{B}^{\ a}$ | ne | | | 5 | 340 | ne | 70.4 _A ^a | 90.7 _A ^a | ne | ne | 3.88 _B ^a | 5.45 _B ^a | ne | [†] ne – not estimated because data did not follow exponential pattern. [‡] In a given row, values within one pool with the same superscript letters, and values within one treatment with the same subscript letters are not significantly different at p<0.05. **Supplementary Online Fig. S1.** Cumulative C mineralized (a and b) after each sugarcane addition (or disturbance) and C mineralized as a proportion of initial OC present (c and d) at each addition of either PyOM (PyOM), sugarcane (SC), the combination of PyOM and sugarcane (PyOM+SC) and no additions (NON) during the incubation period. Note the differences in scales of the y-axes (means and standard errors; n=3).